

REG 861

CRIF Group

[image: image1.png]
TECH SPECS

Project Code: A0001
Project Name: RaPId Claim Settlement – A2A interface
	Document Owner
	Romano Panzacchi

	Version No.
	0.18

	Release Date
	

	Author
	

	Reviewer
	

	Approver
	

	Uncontrolled copy if printed/ photocopied (unless specified otherwise)

	NOTICE:

	Information contained in this document is classified CRIF Internal Use.

Revision History

	Release Date
	Version
	Description
	Author

	29/10/2009
	0.1
	First description of the A2A interfaces
	Lorenzo Pondrelli

	02/11/2009
	0.2
	Added: Get Notification List, Search Claim
	Romano Panzacchi

	16/11/2009
	0.3
	More details for each function. Added all the functions needed for the Stage 1
	RP

	23/11/2009
	0.4
	Adjustments to the interfaces (In/Out)
	RP, LP

	9/12/2009
	0.5
	Refinements – added new functions due to UAT.
	RP

	20/01/2010
	0.6
	Added the function AcknowledgeFraudStated
	RP

	03/02/2010
	0.7
	- Added the function “ResendRejectedClaim” to better handle a step of the Stage 1

- Added the functionalities for the Stage 2.1
	RP

	20/02/2010
	0.8
	Notes on system design
	TR

	23/02/2010
	0.9
	- Added the functionalities for the Stage 2.2

	RP

	22/03/2010
	0.10
	- Added new functionality to search into the Insurers index table

- added sentDateFrom/sentDateTo to SearchClaims
	RP

	30/03/2010
	0.11
	Reworded “flag” argument definition to “Boolean” to avoid any confusion
	TR

	07/04/2010
	0.12
	Improved PhasesID for Stage2.1 and Stage2.2, in details for:

AcceptPartialInterimPayment

AcknowledgePartialPaymentDecision

AddStage2SPFResponse

AddStage2SPFCounterOfferByCM

AddStage2SPFCounterOfferByCR

ExtendStage2SPFCounterOfferTimeout

AddCPPFResponse
	RP

	09/04/2010
	0.13
	added hints on error handling
	TR

	12/04/2010
	0.14
	-improvided error handling section

-typo in AddInterimSPFResponse
	TR

	15/04/2010
	0.15
	Added notes to Lock/Unlock commands
	TR

	27/04/2010
	0.16
	Improved following sections:

· Error trapping template

· LockClaim
Amended following sections:

· getAttachmentsList
· getAttachment
	TR

	05/05/2010
	0.17
	Added dataAttachmentFileName in AddAttachment Request, GetAttachmentsList Response, GetAttachment response, GetPrintableDocumentsList Response, GetPrintableDocument response
	TR

	11/05/2010
	0.18
	Amended GetPrintableDocumentsList response, GetPrintableDocument response for ending “.PDF”
	TR

Table of Contents
61.
Introduction

1.1
Overview
6
1.2
References
6
1.3
WORKFLOWS
8
1.4
Constraints
10
1.4.1
Technical Constraints
10
1.4.2
Security Constraints
10
1.4.3
Manageability Constraints
10
1.4.4
Functional Constraints
11
1.4.4.1
Authentication
11
1.4.4.2
Consistency mechanism
11
1.4.5
Description of the system design
12
1.4.5.1
Organizations processing the claim
12
1.4.5.2
Branches of the organization
12
1.4.5.3
Roles processing the claim
12
1.4.5.4
Administrative console
12
1.4.6
Tailoring the system design to specific needs
12
1.4.6.1
Collapsing roles, branches, users
13
1.4.6.2
Collapsing roles, branches
13
1.4.6.3
Collapsing roles, users
13
1.4.7
Hints on the error handling
13
1.4.7.1
A2ACommands with 1:N WebUI mapping
13
1.4.7.2
Track any received error
14
1.4.7.3
Error trapping template
15
2.
Specific Requirements
16
2.1
Functionalities
16
2.1.1
AddClaim
16
2.1.1.1
AddClaim
16
2.1.1.2
AddClaimResponse
16
2.1.2
Get claims list
18
2.1.2.1
GetClaimsList
18
2.1.2.2
GetClaimsListResponse
18
2.1.3
Search claims
19
2.1.3.1
SearchClaim
19
2.1.3.2
SearchClaimResponse
19
2.1.4
Get claim
21
2.1.4.1
GetClaim
21
2.1.4.2
GetClaimResponse
21
2.1.5
Get claim status
22
2.1.5.1
GetClaimStatus
22
2.1.5.2
GetClaimStatusResponse
22
2.1.6
Get Organisation
23
2.1.6.1
GetOrganisation
23
2.1.6.2
GetOrganisationResponse
23
2.1.7
Get branches list
24
2.1.7.1
GetBranchesList
24
2.1.7.2
GetBranchesListResponse
24
2.1.8
Get hospitals list
25
2.1.8.1
GetHospitalsList
25
2.1.8.2
GetHospitalsListResponse
25
2.1.9
Get notifications list
26
2.1.9.1
GetNotificationsList
26
2.1.9.2
GetNotificationsListResponse
26
2.1.10
Remove notification
27
2.1.10.1
RemoveNotification
27
2.1.10.2
RemoveNotificationResponse
27
2.1.11
Reject Claim to CR
28
2.1.11.1
RejectClaimToCR
28
2.1.11.2
RejectClaimToCRResponse
28
2.1.12
Resend Rejected Claim
29
2.1.12.1
ResendRejectedClaim
29
2.1.12.2
ResendRejectedClaimResponse
29
2.1.13
Reassign to another CM
31
2.1.13.1
ReassignToAnotherCM
31
2.1.13.2
ReassignToAnotherCMResponse
31
2.1.14
Accept Claim
32
2.1.14.1
AcceptClaim
32
2.1.14.2
AcceptClaim Response
32
2.1.15
Apply Article 75
33
2.1.15.1
ApplyArticle75
33
2.1.15.2
ApplyArticle75Response
33
2.1.16
Send Liability Decision
34
2.1.16.1
SendLiabilityDecision
34
2.1.16.2
SendLiabilityDecisionResponse
34
2.1.17
Set Stage1 Payment
35
2.1.17.1
SetStage1Payment
35
2.1.17.2
SetStage1PaymentResponse
35
2.1.18
Acknowledge Denied Liability
37
2.1.18.1
AcknowledgeDeniedLiability
37
2.1.18.2
AcknowledgeDeniedLiabilityResponse
37
2.1.19
Allocate Claim to Branch
38
2.1.19.1
AllocateClaimToBranch
38
2.1.19.2
AllocateClaimToBranchResponse
38
2.1.20
State Fraud
39
2.1.20.1
StateFraud
39
2.1.20.2
StateFraudResponse
39
2.1.21
Acknowledge Fraud Stated
40
2.1.21.1
AcknowledgeFraudStated
40
2.1.21.2
AcknowledgeFraudStatedResponse
40
2.1.22
Add attachment
41
2.1.22.1
addAttachment
41
2.1.22.2
addAttachmentResponse
41
2.1.23
Get attachments list
42
2.1.23.1
getAttachmentsList
42
2.1.23.2
getAttachmentsListResponse
42
2.1.24
Get attachment
43
2.1.24.1
getAttachment
43
2.1.24.2
getAttachmentResponse
43
2.1.25
Get printable documents list
44
2.1.25.1
getPrintableDocumentsList
44
2.1.25.2
getPrintableDocumentsListResponse
44
2.1.26
Get Printable Document
45
2.1.26.1
getPrintableDocument
45
2.1.26.2
getPrintableDocumentResponse
45
2.1.27
Lock Claim
46
2.1.27.1
LockClaim
46
2.1.27.2
LockClaim Response
46
2.1.28
Unlock Claim
47
2.1.28.1
UnlockClaim
47
2.1.28.2
UnlockClaim Response
47
2.1.29
Force unlock Claim
48
2.1.29.1
ForceUnlockClaim
48
2.1.29.2
ForceUnlockClaimResponse
48
2.1.30
Search Compensators
49
2.1.30.1
SearchCompensators
49
2.1.30.2
SearchCompensatorsResponse
49
2.1.31
SearchCompensatorsByInsurerIndex
50
2.1.31.1
SearchCompensatorsByInsurerIndex
50
2.1.31.2
SearchCompensatorsByInsurerIndexResponse
50
2.2
Functionalities specific for Stage 2.1
52
2.2.1
SetInterimPaymentNeeded
52
2.2.1.1
SetInterimPaymentNeeded
52
2.2.1.2
SetInterimPaymentNeededResponse
52
2.2.2
AddInterimSPFRequest
54
2.2.2.1
AddInterimSPFRequest
54
2.2.2.2
AddInterimSPFRequestResponse
54
2.2.3
AddInterimSPFResponse
55
2.2.3.1
AddInterimSPFResponse
55
2.2.3.2
AddInterimSPFResponseResponse
55
2.2.4
Set Stage2_1 Payment
56
2.2.4.1
SetStage2_1Payment
56
2.2.4.2
SetStage2_1PaymentResponse
56
2.2.5
AcceptPartialInterimPayment
58
2.2.5.1
AcceptPartialInterimPayment
58
2.2.5.2
AcceptPartialInterimPaymentResponse
58
2.2.6
AcknowledgePartialPaymentDecision
59
2.2.6.1
AcknowledgePartialPaymentDecision
59
2.2.6.2
AcknowledgePartialPaymentDecisionResponse
59
2.3
Functionalities specific for Stage 2.2
60
2.3.1
AddStage2SPFRequest
60
2.3.1.1
AddStage2SPFRequest
60
2.3.1.2
AddStage2SPFRequestResponse
60
2.3.2
AddStage2SPFResponse
61
2.3.2.1
AddStage2SPFResponse
61
2.3.2.2
AddStage2SPFResponseResponse
61
2.3.3
AcknowledgeStage2SPFRepudiation
62
2.3.3.1
AcknowledgeStage2SPFRepudiation
62
2.3.3.2
AcknowledgeStage2SPFRepudiationResponse
62
2.3.4
AcknowledgeStage2SPFConfirmation
63
2.3.4.1
AcknowledgeStage2SPFConfirmation
63
2.3.4.2
AcknowledgeStage2SPFConfirmationResponse
63
2.3.5
AddStage2SPFCounterOfferByCM
64
2.3.5.1
AddStage2SPFCounterOfferByCM
64
2.3.5.2
AddStage2SPFCounterOfferByCMResponse
64
2.3.6
AddStage2SPFCounterOfferByCR
65
2.3.6.1
AddStage2SPFCounterOfferByCR
65
2.3.6.2
AddStage2SPFCounterOfferByCRResponse
65
2.3.7
SetStage2SPFCounterOfferNeeded
66
2.3.7.1
SetStage2SPFCounterOfferNeeded
66
2.3.7.2
SetStage2SPFCounterOfferNeededResponse
66
2.3.8
ExtendStage2SPFDecisionTimeout
67
2.3.8.1
ExtendStage2SPFDecisionTimeout
67
2.3.8.2
ExtendStage2SPFDecisionTimeoutResponse
67
2.3.9
ExtendStage2SPFCounterOfferTimeout
68
2.3.9.1
ExtendStage2SPFCounterOfferTimeout
68
2.3.9.2
ExtendStage2SPFCounterOfferTimeoutResponse
68
2.3.10
SetStage2SPFAgreementDecision
69
2.3.10.1
SetStage2SPFAgreementDecision
69
2.3.10.2
SetStage2SPFAgreementDecisionResponse
69
2.3.11
AcknowledgeStage2SPFAgreed
70
2.3.11.1
AcknowledgeStage2SPFAgreed
70
2.3.11.2
AcknowledgeStage2SPFAgreedResponse
70
2.3.12
AddCPPFRequest
71
2.3.12.1
AddCPPFRequestRequest
71
2.3.12.2
AddCPPFRequestResponse
71
2.3.13
AddCPPFResponse
72
2.3.13.1
AddCPPFResponse
72
2.3.13.2
AddCPPFResponseResponse
72
2.3.14
AcknowledgeCPPFResponse
73
2.3.14.1
AcknowledgeCPPFResponse
73
2.3.14.2
AcknowledgeCPPFResponseResponse
73

1. Introduction

1.1 Overview

This document describes the main functionalities to access the RaPId Claim Settlement system in A2A.
Many amendments to the document, to the schemas of the documentInput, to the wsdl file are already expected due to the Acceptance Test of Stage 1 which is taking place in December 2009.

Other modifications are already known with regards to functions to be changed and/or directly removed, phases to be added/changed/removed as a consequence of the implementation of the Stage 2.1 and 2.2 which will be done later on in 2010 as per project plan.
1.2 References

· Glossary

[PIP] = PIP stands for Personal Injury Process. The real product name is now:
RaPId Claim Settlement

[CR] = Claimant Representative

[CM] = Compensator
· References

PIPWS.wsdl– wsdl file
DocumentInput.xsd – schema used to add a claim Notification Form
InsurerResponse.xsd – schema used to add an Insurer Response

GetClaimData.xsd - schema used to get the Claim details
PIP phases and notifications.xls – list of phases with descriptions related to the event that triggers a change of phase through the webUI of RaPId Claim Settlement.
List of Notification messages that can be received by the system.

1.3 WORKFLOWS
Stage 1

[image: image2.png]
Stage 2.1

[image: image3.png]
Stage 2.2
[image: image4.png]
1.4 Constraints

1.4.1 Technical Constraints

All the functionalities will be provided on top of the functionalities provided by the CFJ product.
1.4.2 Security Constraints

HTTPS connections will be used to manage the security of the communications via SOAP message to the RaPId Claim Settlement Web Services.
1.4.3 Manageability Constraints

TBD

1.4.4 Functional Constraints

1.4.4.1 Authentication
The authentication via A2A is done by inserting the authentication parameters in the body of each A2A request.

If the authentication fails, the system sends back a response with an error message .
1.4.4.2 Consistency mechanism
In order to keep the system consistent, we implemented a mechanism to make the clients to always be sure that there aren’t concurrent actions on a claim.
Generally:

for each A2A action on a claim (even a simple GetClaim) the system sends back to the client 2 unique IDs:

· The applicationID of the claim

[it does not change during the lifecycle of the claim]

· The “activityEngineGuid” representing the status in which that claim is at the moment

[this is a unique ID representing “that claim in that specific moment”. It’s not banally an ID of a phase.
CLARIFICATION: if 2 different claims are in the same phase of the workflow, they have 2 different activityEngineGUIDs
These IDs must be used by the A2A client to perform A2A actions on a claim.

The system will check if the Claim represented by the ClaimID is still in the phase represented by the activityEngineGuid:

· IF NOT, the action fails and the system sends back an error message

· IF YES, the action is successful and the system will give back to the A2A client a response containing (as said above) also the claimID and the new “activityEngineGuid”.

This mechanism is especially needed to avoid that an A2A client performs an action on a claim which is still in the same phase although it had been modified by someone else.

Example:

1) claim 123 is in phase A

2) the A2A client gets the claim 123 to read its details

3) someone else updates the claim which goes from phase A to phase B: A (B

4) someone else updates the claim which goes from phase B to phase A: B (A

5) the A2A client tries to update the claim to change its phase from A to C

a. without this mechanism, the system would allow the A2A client to change the phase from A to C

b. with this mechanism, the system informs the A2A client that “something happen to the claim after the last GetClaim performed”. Hence the A2A client is forced to retrieve the claim (and the related “activityEngineGuid” to look at it before proceeding.
1.4.5 Description of the system design
The A2A system design is based on the web portal model.
1.4.5.1 Organizations processing the claim

The claim is processed by two organizations type: the ClaimRepresentative (CR) and the Compensator (COMP); further there is MIB, but will not be detailed in this section.

A single organization alone is not able to complete the full claim flow: for example a COMP organization will start processing a claim only when a CR organization has submitted a new claim.

1.4.5.2 Branches of the organization

Organizations are organized into branches, and users belong to branches.

Branches are usually based on a geographical model or on existing sites/offices/agencies.
1.4.5.2.1 Special branch of COMP organization

For the COMP organizations, one and only one branch is defined as CentralPoint, which is the default target branch of the AddClaim() command executed by CR users.

1.4.5.3 Roles processing the claim

The claim percolate to the user thru the branches, and is managed in different ways by users with different roles.

1.4.5.3.1 COMP Roles

The Claim Dispatcher role (CD) will poll for claims waiting for COMP processing and will allocate the claim to the relevant branch.

The Claim Handler role (CH) will actually enter data or will take decisions on the claim; the CH will receive notifications for timeouts expiring on claims being processed, or actions of the CR user on processed claims.

1.4.5.3.2 CR Roles
The Claim Handler role (CH) will actually enter data or will take decisions on the claim; the CH will receive notifications for timeouts expiring on claims being processed, or actions of the COMP user on processed claims.
The CH will poll for claims waiting for CR processing.
1.4.5.4 Administrative console

Every organization will receive special administrative account able to login onto the administrative console, to create/modify branches, create users with specific roles.
1.4.6 Tailoring the system design to specific needs
In case there is an already existing branch/role design, the actual system usage may depart from the expected system usage according to different models; in this case it is suggested a careful monitoring on the system in order detect any issue and coordinate with Crif in case actions are needed.

Some notes follows on non standard usage scenarios.
1.4.6.1 Collapsing roles, branches, users

One single user belonging to a single branch for the organisation.

The system on calling side should track ownership of claims by actual employee.

The system on calling side should track which claims belong to which actual branch.
1.4.6.1.1 Collapsing from CR point of view
The CR will have 1 single branch with 1 single user.

All notifications will be received by the single user, which should collect notifications and delete them from the A2A system as soon as possible.

1.4.6.1.2 Collapsing from COMP point of view
The COMP will have 1 single branch, defined as CentralPoint, which 1 single user.
The COMP user will have the CH role; no user will be assigned the CD role.

No need for branch routing of claims: for example no need to call AllocateClaimToBranch(), GetBranchesList().

COMP polling is done by CH user role by calling GetClaimsList()

All notifications will be received by the single user, which should collect notifications and delete them from the A2A system as soon as possible.
1.4.6.2 Collapsing roles, branches
Multiple users belonging to a single branch for the organisation.

The system on calling side should track which claims belong to which actual branch.
The variation against previous scenario 1.4.6.1, is that notifications are split among multiple users.

1.4.6.3 Collapsing roles, users
One single user belonging to one of the branches of the organisation.

The system on calling side should track ownership of claims by actual employee.

The variation against previous scenario 1.4.6.1, is that notifications are split among multiple users.
1.4.7 Hints on the error handling
As a standard approach, in case of failure or error, the system responds with an error message in the Response, containing the following tags:

· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

1.4.7.1 A2ACommands with 1:N WebUI mapping
The A2A design closely matches the Web UI design.

Anyay there are commands which corresponds to more than one web form, so when executing this kind of command, the A2A layer actually will pass through the logic corresponding to such forms: in this case if a problem or business rule mismatch is detected in the middle, the Code will be “Failure”, Message will be “The process has followed an unexpected path”, and the Trace tag will contain an ErrorData element with the list of business error mismatches. Further, since the flow may have partially run thru the steps, the ActivityEngineGuid may change, so it’s required to read again from the system.
So in this case, it is suggested to:

· read again the ActivityEngineGuid (for example using GetClaimsStatus)

· re-edit the data

· re-submit the command

1.4.7.2 Track any received error
Ensure that your CMS system tracks any returned error and store it linked to the relevant claim and ensure is shown to user together with claim data, since the system will not return error info related to a claim: ie no error info is currently reported by GetClaimsStatus() or GetClaim().

1.4.7.3 Error trapping template
According to the above notes, we suggest the following error trapping pseudocode fragment:

Switch(code) {

Case “Failure”:

Switch(trace) {

Case “InputDocumentNotValid”:

=> XML to be re-built (validate XML against XSD to detect wrong node)

Case “ProcessEnd”: // occurs only on AddClaim()

=> XML to be re-edited (inspect ErrorData for business error details)

Case “* XML Invalid”: // string that contains ‘XML Invalid’

=> XML argument to be re-edited (inspect <trace> tag for XML parser error)
Case “*org.xml.sax.SAXParseException*”: // string that contains this string’

=> XML argument to be re-edited (inspect <trace> tag for XML parser error)
Case “The process has followed an unexpected path”: // 1:N webUi mapping
=> XML to be re-edited (inspect ErrorData for business error details),
execute GetClaimsStatus() to ensure using the latest ActivityEngineGuid
Case “The operation could not be applied in this point”:

if(Trace contains ‘the process is not freezed in any of the expected activities’)

then

command executed in the wrong flow step (either wrong command sequence or wait for other side)

else

reload ActivityEngineGuid with GetClaimsStatus()
if ActivityEngineGuid is changed
then: claim changed by someone else

else: command executed in the wrong flow step (either wrong command sequence or wait for other side)
Case “InsufficientPrivileges”:

=> Authentication problem (CMS account management issue?)
Case “”

If(trace==“User is not allowed to see application details”)
=> not existing claimd id or user is not granted to access the claim

If(trace==“User is not allowed to see application details”)
=> not existing claimd id or user is not granted to access the claim

Case “LoginAs failed”:

=> Authentication problem (password expired?)
Case “ApplicationID Invalid”:

=> the specified ClaimID is wrong
Else: possibly an application/implementation error => contact internal help desk (if required, could escalate to CRIF help desk)

}

Case “Error”:
Switch(message) {

Case “Operation failed, check inner exception”:

If the <trace> tag contains the substring “com.crif.cf.exceptions.CFApplicationException: Activity Worklist does not match”

then: executing the command with the wrong account (either CR for COMP or COMP for CR)

elseif the <trace> tag contains the substring “com.crif.cf.exceptions.CFApplicationException: Process 5E280373-AFF8-4D35-A646-758AABF77492 already running” (note the GUID may be different)

then: possible concurrency issue, re-read ActivityEngineGuid and re-execute the command previously failed

else:

possibly a CRIF problem => contact CRIF help desk

Else: possibly a CRIF problem => contact CRIF help desk

}
}
2. Specific Requirements

2.1 Functionalities
2.1.1 AddClaim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-1
	Add Claim
	High
	ONLY for CR

2.1.1.1 AddClaim

This request allows to add a new claim into the system.
The claim is automatically routed to the CentralPoint branch of the target Insurer.

The SentDate used for timeouts will be automatically set by the system, and will be the date the submitting of the claim is completed.

INPUT:

· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimXML – the content of the claim notification form (see schema DocumentInput.xsd, when consolidated).

2.1.1.2 AddClaimResponse

This is the synchronous response message sent by the system back to the A2A client.
OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”
· Message – a text message
· Trace – the trace of the error (always present if code == “error”)
ERROR HANDLING
To manage errors, it is suggested the approach shown in the following pseudocode fragment:

Switch(code) {

Case “Failure”:

Switch(message) {

Case “InputDocumentNotValid”: => XML to be re-built (validate XML against XSD for wrong node)

Case “ProcessEnd”: => XML to be re-edited (inspect ErrorData for business error details)
Case “InsufficientPrivileges”: => Authentication problem (CMS account management issue?)

Case “LoginAs failed”: => Authentication problem (password expired?)

Else: possibly an application/implementation error => contact internal help desk (if required, could escalate to CRIF help desk)

}

Case “Error”: possibly a CRIF problem => contact CRIF help desk
}

2.1.2 Get claims list

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-2
	
	High
	

2.1.2.1 GetClaimsList

This request allows to get the information found on the work list of a single user. The data structure returned includes all the information needed for retrieving details on a single claim and its status.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
2.1.2.2 GetClaimsListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· claimsListResponse
· Code – ok
· claimsList

the list of claims belonging to the worklist of the user “asUser”. Per each item:
· activityEngineGuid
· attachmentsCount
· applicationId
· applicationReferences – [the CR Reference Number and the Defendant’s Insurer (alias CM) Reference Number]
· creationTime
· currentUserID
· lockStatus
· lockUserId
· phaseCacheId
· phaseCacheName
· printableDocumentsCount
· versionMajor
· versionMinor
In case of failure or error, the system responds with an error message:
· claimsListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.3 Search claims

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-3
	
	High
	

2.1.3.1 SearchClaim
This request allows to search for a claim by specifying a set of search criteria.

Search criteria:

claimID, Claim CR Reference number, Claim CM Reference Number, phase, branchID, start and end dates
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· searchClaimCriteria
· applicationID
· Claim CR Reference number
· Claim CM Reference Number
· branched
· sortField

· sortOrder

· phaseCacheId
· startDateFrom
· endDateTo
· sentDateFrom

· sentDateTo

2.1.3.2 SearchClaimResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· claimInfosListResponse
· Code – ok

· claimsList

the list of claims belonging matching the given criteria and visible to the user “asUser”. Per each item:

· activityEngineGuid
· attachmentsCount
· applicationId
· applicationReferences
· creationTime
· currentUserID
· lockStatus
· lockUserId
· phaseCacheId
· phaseCacheName
· printableDocumentsCount
· versionMajor
· versionMinor
In case of failure or error, the system responds with an error message:
· claimInfosListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.4 Get claim

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-4
	
	High
	

2.1.4.1 GetClaim
This request allows to get all the information stored within a particular claim up to the phase in which the claim has arrived. The data returned by the functionality includes process and business information.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· applicationId
2.1.4.2 GetClaimResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· stringResponse
· code – ok

· value – this node contain the xml of the requested claim. The structure of this xml is described in the schema.
In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.5 Get claim status

The functionality is used to retrieve the status of a particular claim. This function can be used in order to know the position in the process of a particular claim and so to update the claim using the right command.

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-5
	
	High
	

2.1.5.1 GetClaimStatus
This request allows to retrieve the status of a particular claim. This function can be used in order to know the position in the process of a particular claim and so to update the claim using the right activityEngineGUID.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· applicationId
2.1.5.2 GetClaimStatusResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.6 Get Organisation
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-6
	
	High
	

2.1.6.1 GetOrganisation
This request allows to get the details of an Organisation starting from the path.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· organisationPath – the Organisation Path (=”\”+<OrganisationId>) to be get.
2.1.6.2 GetOrganisationResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· code – ok

· organisation
· organisationId

· organisationName

· organisationPath

· address (it’s a set of fields)

In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.7 Get branches list

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-7
	
	High
	

2.1.7.1 GetBranchesList

This request allows to get the list of the branches of the Organisation of the user “asUser”.
Since the list of branches does not change so often, it should be called only in case of reasonable doubts that the list was updated after the last time the same function was called.

We suggest the A2A clients to cache these info.

The misuse of this feature could impact the performances of the system.

INPUT:

· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
2.1.7.2 GetBranchesListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· Code – ok

· organisationInfosList

the list of branches of the organisation (together with the info about their
status enabled/disabled)
For each item:

· organisationId

· organisationName

· organisationPath

In case of failure or error, the system responds with an error message:
· organisationInfosListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.8 Get hospitals list

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-8
	
	High
	

2.1.8.1 GetHospitalsList

This request allows to get a list of public Hospitals in the system, given some search criteria. It can be used to align the client system with the whole list of public (NHS) Hospitals in the DB.

The misuse of this feature could impact the performances of the system.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· hospitalName – text to be searched in the hospital name
· postCode – postcode to be searched
2.1.8.2 GetHospitalsListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code – ok

· hospitalsList

the list of public Hospitals that matches with the input criteria

For each item:

· name

· postCode
· addressLine1

· addressLine2

· addressLine3

· addressLine4
In case of failure or error, the system responds with an error message:
· hospitalsListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.9 Get notifications list
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-9
	
	High
	

2.1.9.1 GetNotificationsList

This request allows to get the list of the Notifications available to the user “asUser” (and displayed to this user in the section “Notifications” of the webUI) not yet deleted from the system.
This function should be called periodically by the A2A client to keep their system up to date.

The misuse of this feature could impact the performances of the system.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
2.1.9.2 GetNotificationsListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code – ok

· notificationsList

the list of the Notifications not yet deleted from the system

For each item:

· formattedDate

· notificationDateTime
· notificationGuid

· notificationMessage
· applicationId
In case of failure or error, the system responds with an error message:
· notificationsList Response
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.10 Remove notification
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-10
	
	High
	

2.1.10.1 RemoveNotification
This request allows to delete the notification from the system.

NOTE (Depending on the user that is in the userAuth section of the xml request, the deletion of a Notification can be possible or not.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· notificationID – the id of the notification to be deleted
2.1.10.2 RemoveNotificationResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok
In case of failure or error, the system responds with an error message:
· response
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.11 Reject Claim to CR
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-11
	· This function can be called only if the claim is in phase “Claim submitted”
· In case of success, the claim goes in the phase: ”Claim rejected to CR”
	High
	ONLY for CM

2.1.11.1 RejectClaimToCR
This request allows a CM to send the claim back to the CR.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· claimData

· applicationID

· activityEngineGuid
2.1.11.2 RejectClaimToCRResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.12 Resend Rejected Claim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-12
	· This function can be called only if the claim is in phase “Claim rejected to CR”

· In case of success, the claim goes in the phase: ”Claim submitted”
	High
	ONLY for CR

2.1.12.1 ResendRejectedClaim
This request allows a CR to re-send a claim that (has been rejected) to a Compensator
Example (feasible scenario):

1) The CR adds a claim and sends it to a Compensator

2) The Compensator looks at it and rejects the claim

3) At this point, the CR (that has received a Notification of “Rejected claim” and can also see the claim in the worklist with the phase “Claim rejected to CR”) can modify the CNF (by changing also the ID of the Insurer to which they want to send the claim) and re-send it through this function.

Note 1: if someone interferes with the application via the web portal and moves it in an intermediate tab to edit the claim and resend it via web, this function is not anymore usable via A2A because the phase changes from “Claim Rejected to CR” to “Claim Data Input/Edit”. Hence the web user must complete the task via web portal as a workaround.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· claimData

· applicationID

· activityEngineGuid
· claimXML – the content of the claim notification form (see schema DocumentInput.xsd).

2.1.12.2 ResendRejectedClaimResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.13 Reassign to another CM
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-13
	· This function can be called only if the claim is in phase “Claim submitted”

· In case of success, the claim does not change its phase
	High
	ONLY for CM

2.1.13.1 ReassignToAnotherCM
This request allows a CM to re-assign the claim to another CR.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A
· asUser – username of the user in PIP
· claimData

· applicationID

· activityEngineGuid
· OrganisationPath – The Path of the compensator to which the claim must be re-assigned
2.1.13.2 ReassignToAnotherCMResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.14 Accept Claim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-14
	· This function can be called only if the claim is in phase “Claim submitted”

· In case of success:

If it’s accepted by MIB, the claim goes in the phase “Liability Decision”
ELSE IF it is accepted by another type of CM, the claim goes in the phase “Article 75 Decision”
	High
	ONLY FOR CM

2.1.14.1 AcceptClaim
This request.allows a Compensator to officially indicate that the claim is theirs. From this moment on, a Compensator can not re-assign the claim to another compensator or to resend it back to the CR.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.1.14.2 AcceptClaim Response

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.15 Apply Article 75
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-15
	· This function can be called only if the claim is in phase “Article 75 decision”

In case of success the claim goes in the phase “Liability Decision”
	High
	ONLY for CM of type “Insurer” and “Self Insured”.

2.1.15.1 ApplyArticle75
This request allows a CM to apply the Article 75 for a claim
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· isArticle75 – 0/1 (or ‘false’/’true’) boolean. Indicate whether the Article 75 applies or not

· claimData

· applicationID

· activityEngineGuid
2.1.15.2 ApplyArticle75Response

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.16 Send Liability Decision
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-16
	· This function can be called only if the claim is in phase “Liability decision”
· In case of success the claim goes into one of these phases: “Liability admitted”, “Liability not admitted”, “Liability admitted with negligence (other than seatbelt)”
	High
	ONLY for CM

2.1.16.1 SendLiabilityDecision
This request allows a CM to send the response about the Liability for the given Claim
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· insurerResponseXml – the XML of the response. See the definitive related Schema when available.
2.1.16.2 SendLiabilityDecisionResponse
This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.17 Set Stage1 Payment
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-17
	· This function can be called only if the claim is in phase “Liability Admitted” or “Liability Admitted with negligence (other than seatbelt)”
· In case of success:

IF Liability decision=“Liability Admitted” THEN the claim goes in the phase “Start of stage 2.1“

ELSE the claim goes in the phase “Stage 1 complete”
	High
	ONLY for CR

2.1.17.1 SetStage1Payment
This request allows a CR to simply indicate that the Payment for the given Claim has been received or not
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isStage1Paid – 0/1 (or ‘false’/’true’) boolean
NOTE that “isStage1Paid = false” can be accepted by the system only if the period of “15 (or 30) + 10” business days is expired.
2.1.17.2 SetStage1PaymentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.18 Acknowledge Denied Liability
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-18
	· This function can be called only if the claim is in phase “Liability not Admitted”

· In case of success the claim goes in the phase “Stage 1 complete”
	High
	ONLY for CR

2.1.18.1 AcknowledgeDeniedLiability
This request allows a CR to simply indicate that the Payment for the given Claim has been received or not
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.1.18.2 AcknowledgeDeniedLiabilityResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.19 Allocate Claim to Branch
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-19
	· This function can be called only if the claim is in any phase belonging to the CM
· In case of success, the claim does not change its phase
	High
	For CM

2.1.19.1 AllocateClaimToBranch
This request allows a CM to allocate the claim to a branch of their organisation.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· branchId
2.1.19.2 AllocateClaimToBranchResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.20 State Fraud
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-20
	· This function can be called only if the claim is in any phase belonging to the CM

· In case of success, the claim goes in the phase: ”Fraud Stated”
	High
	ONLY for CM

2.1.20.1 StateFraud
This request allows a CM to throw the claim out of the process due to a Fraud, adding also a reason for this action.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· reasonCode

· reasonDescription
2.1.20.2 StateFraudResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.21 Acknowledge Fraud Stated
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-21
	· This function can be called only if the claim is in phase “Fraud Stated”

· In case of success the claim ends
	High
	ONLY for CR

2.1.21.1 AcknowledgeFraudStated
This request allows a CR to simply indicate that they saw the message about the Fraud stated by the the Compensator
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.1.21.2 AcknowledgeFraudStatedResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.22 Add attachment
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-22
	
	High
	

2.1.22.1 addAttachment
This request allows to add attachment to a particular claim. In case of file, the attachment has to be passed to the interface as stream of bytes; in case of note, the note is passed as text. The attachment is identified in the system with an attachment ID, a title and a description.

The maximum size allowed is 4 MB.

INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· Attachment
· applicationId – the ID of the Claim to which the attachment is related
· dataAttachmentGuid – ignore it, optional
· dataAttachmentFileName – the filename, empty if attaching a note
· dataAttachmentFileZip – stream of bytes representing the file to be uploaded (not compressed with Zip), empty if attaching a note)
· dataAttachmentTitle - notes describing the file content and usage
· dataAttachmentDesc – a text description of the file
If adding a note, the text will go in dataAttachmentDesc, and leave empty dataAttachmentFileName and dataAttachmentFileZip.

2.1.22.2 addAttachmentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code - ok

· value – the ID of the Attachment
In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.23 Get attachments list

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-23
	
	High
	

2.1.23.1 getAttachmentsList
This request allows to get the list of attachments of to a particular claim.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· applicationID – the ID of the Claim for which the attachments are requested
2.1.23.2 getAttachmentsListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code

· attachmentsList

the list of the Attachments for that applicationID

For each item:

· dataAttachmentGuid – the Id of the attachment
· dataAttachmentFileName – the filename of the attachment
· dataAttachmentTitle - a title for the file
· dataAttachmentDesc – a description of the file
In case of a note attachment, dataAttachmentFileName and dataAttachmentFileZip will be empty.

In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.24 Get attachment

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-24
	
	High
	

2.1.24.1 getAttachment
This request allows to get an attachment as a stream of bytes.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· attachmentGuid – the ID of the attachment
2.1.24.2 getAttachmentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code – ok

· attachment

· dataAttachmentGuid – the Id of the attachment

· dataAttachmentFileName – the filename of the attachment
· dataAttachmentFileZip – stream of bytes representing the file to be uploaded
· dataAttachmentTitle - a title for the file
· dataAttachmentDesc – a description of the file
In case of failure or error, the system responds with an error message:
· attachmentResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.25 Get printable documents list

	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-25
	
	High
	

2.1.25.1 getPrintableDocumentsList
This request allows to get the list of printable documents of a particular claim.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· applicationID – the ID of the Claim for which the printable documents are requested
2.1.25.2 getPrintableDocumentsListResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· code - ok

· attachmentsList

the list of the printable documents for that applicationID

For each item:

· applicationId – the ID of the Claim to which the attachment is related

· dataAttachmentGuid – the Id of the Printable document

· dataAttachmentFileName – the file name of the printable document (including “.PDF” extension)
· dataAttachmentTitle - a title for the file
· dataAttachmentDesc – a description of the file
In case of failure or error, the system responds with an error message:
· attachmentsListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.26 Get Printable Document
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-26
	
	High
	

2.1.26.1 getPrintableDocument
This request allows to get a Printable Document.
INPUT:
· userAuth
· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP
· PrintableDocumentID – the ID of the Printable Document
2.1.26.2 getPrintableDocumentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· code – ok

· attachment

· applicationId – the ID of the Claim to which the attachment is related

· dataAttachmentGuid – the Id of the Printable document
· dataAttachmentFileName – the file name of the printable document (including “.PDF” extension)
· dataAttachmentFileZip – stream of bytes representing the file to be uploaded (this is always a PDF document)
· dataAttachmentTitle - a title for the file
· dataAttachmentDesc – a description of the file
In case of failure or error, the system responds with an error message:
· attachmentResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.27 Lock Claim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-27
	
	High
	

2.1.27.1 LockClaim
This request allows to lock a claim.

Only the user who has locked the claim can then execute commands which change the flow step or adds data to the claim. The claim can be unlocked by the same user who has locked using an unlock claim method or can be unlocked by other users using the force unlock method.
The life scope of the lock established by LockClaim is up to the execution of the next command which changes the flow step or adds data to the claim; to maintain the lock after such command, a new LockClaim should be executed.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.1.27.2 LockClaim Response

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· Code - ok
In case of failure or error, the system responds with an error message:
· response
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.28 Unlock Claim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-28
	
	High
	

2.1.28.1 UnlockClaim
This request allows to unlock a claim.

Only the user who had locked the claim can unlock it.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· applicationID

2.1.28.2 UnlockClaim Response

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· Code - ok

In case of failure or error, the system responds with an error message:
· response
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.29 Force unlock Claim
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-29
	
	High
	

2.1.29.1 ForceUnlockClaim
This request allows to force the unlocking of any claim, currently locked by any user.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· applicationID

2.1.29.2 ForceUnlockClaimResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

In case of failure or error, the system responds with an error message:
· response
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.30 Search Compensators
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-30
	
	High
	For CR

2.1.30.1 SearchCompensators
This request allows to search a compensator, in order to get the OrganisationId to send the claim. The search is performed with a partial match on the organisationName.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· compensatorType – I (Insurer), S (Self Insured), M (MIB)

· organisationName
2.1.30.2 SearchCompensatorsResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code – ok

· organisationsInfoList. Per each item:

· organisationId

· organisationName

· organisationPath

In case of failure or error, the system responds with an error message:
· organisationInfoListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.1.31 SearchCompensatorsByInsurerIndex
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN001-31
	
	High
	For CR

2.1.31.1 SearchCompensatorsByInsurerIndex
This request allows to search a compensator, using the new InsurersIndexTable introduced in the second phase of the project, in order to get the OrgnisationId to send the claim to and the Insurer Name to be inserted in the CNF in the field “InsurerName” of the Defendant’s Insurer.

The Insurer Index table is a table requested by the stakeholders of this project. Each record of this table provides:

1 and 2) A field “Insurer name” and a field “Contact name”, used by the system to perform a text search. These two fields contain values thatshould help the Claimant Representative in finding the right record in the DB

3) a field raPIdInsurerID, which indicates the real Insurer to which the claim must be sent
4) a field raPIdInsurerName, which contains the text to be shown on the CNF
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· OrganisationName
2.1.31.2 SearchCompensatorsByInsurerIndexResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code – ok

· InsurerIndexList. Per each item:

· InsurerName

· ContactnName

· rapidInsurerId – the Id to which the claim should be sent, if the user believes that the InsurerName and ContactName are the right ones
· rapidInsurerPath – the path of the Insurer to which the claim should be sent (note that the path is present only for completion’s sake, but it is going to be deprecated, since the organisationID is the important field to add a CNF)

· rapidInsurerName – the text to be shown on the CNF in the first page of the pdf (“Insurer name”).
In case of failure or error, the system responds with an error message:
· organisationInfoListResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.2 Functionalities specific for Stage 2.1
2.2.1 SetInterimPaymentNeeded
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-1
	· This function can be called only if the claim is in phase “Start of stage 2.1”
· In case of success:

IF (isInterimPaymentNeeded = true) THEN the claim goes in the phase: “Interim Settlement Pack Form”
ELSE the claim goes directly in the phase “Stage 2 Settlement Pack Form”
	High
	ONLY for CR

2.2.1.1 SetInterimPaymentNeeded
This request allows to add an Interim Settlement Pack Form Request for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isInterimPaymentNeeded – a flag that indicates whether the InterimPayment is needed.

2.2.1.2 SetInterimPaymentNeededResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.2.2 AddInterimSPFRequest
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-2
	· This function can be called only if the claim is in phase “Interim Settlement Pack Form”
· In case of success, the claim goes in the phase: ”Interim Payment decision”
	High
	ONLY for CR

2.2.2.1 AddInterimSPFRequest

This request allows to add an Interim Settlement Pack Form Request for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· ISPFRequestXML – the content of the Interim Settlement Pack Form Request.

2.2.2.2 AddInterimSPFRequestResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.2.3 AddInterimSPFResponse
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-3
	· This function can be called only if the claim is in phase “Interim Payment decision”
· In case of success:

IF the Compensator offered the same amount requested by the CR, the claim goes in the phase: “Waiting for Interim payment”

ELSE the claim goes in the phase: ”Acceptance of partial Interim payment”
	High
	ONLY for COMP

2.2.3.1 AddInterimSPFResponse
This request allows to add an Interim Settlement Pack Form Response for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· ISPFResponseXML – the content of the Interim Settlement Pack Form Response.

2.2.3.2 AddInterimSPFResponseResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.2.4 Set Stage2_1 Payment
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-4
	· This function can be called only if the claim is in phase “Waiting for Interim payment”

· In case of success:

IF (the interim payment requested was > 1000, the Compensator offered less money and the CR DID NOT accept the partial offer) THEN the claim goes in the phase “Stage 2.1 complete“

ELSE the claim goes in the phase “Stage 2 Settlement Pack Form”
	High
	ONLY for CR

2.2.4.1 SetStage2_1Payment
This request allows a CR to simply indicate that the Payment for the given Interim Settlement Pack Form has been received or not
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isStage2_1Paid – 0/1 (or ‘false’/’true) boolean
NOTE that “isStage2_1Paid = false” can be accepted by the system only if the period of “10 (or 15)” business days is expired.
2.2.4.2 SetStage2_1PaymentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· stringResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)
2.2.5 AcceptPartialInterimPayment
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-5
	· This function can be called only if the claim is in phase “Acceptance of partial Interim payment”

· In case of success the claim goes in the phase “Decision for Partial Interim payment”
	High
	ONLY for CR

2.2.5.1 AcceptPartialInterimPayment
This request allows a CR to accept or not to accept the offer for a partial payment made by the Compensator.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isPartialInterimPaymentAccepted – 0/1 (or ‘false’/’true’) boolean
2.2.5.2 AcceptPartialInterimPaymentResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.2.6 AcknowledgePartialPaymentDecision
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN002-6
	· This function can be called only if the claim is in phase “Decision for partial Interim payment”

· In case of success the claim goes in the phase “Waiting for Interim payment”
	High
	ONLY for CM

2.2.6.1 AcknowledgePartialPaymentDecision
This request allows a Compensator to simply indicate that they received the message with the decision on the Partial Payment taken by the CR. Nothing else: it is simply a step needed in the workflow.
INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.2.6.2 AcknowledgePartialPaymentDecisionResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error

2.3 Functionalities specific for Stage 2.2
2.3.1 AddStage2SPFRequest
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-1
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack Form”
· In case of success, the claim goes in the phase: ”Stage 2 Settlement Pack decision”
	High
	ONLY for CR

2.3.1.1 AddStage2SPFRequest

This request allows to add a Stage 2 Settlement Pack Form Request for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· S2SPFRequestXML – the content of the Stage 2 Settlement Pack Form Request.

2.3.1.2 AddStage2SPFRequestResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.2 AddStage2SPFResponse
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-2
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack decision”
· In case of success the claim goes into one of these phases: “Stage 2 Settlement Pack repudiation”, “Stage 2 Settlement Pack confirmation”, “Stage 2 Settlement Pack counter offer decision”
	High
	ONLY for CM

2.3.2.1 AddStage2SPFResponse
This request allows to add a Stage 2 Settlement Pack Form Response for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· S2SPFResponseXML – the content of the Stage 2 Settlement Pack Form Response.

2.3.2.2 AddStage2SPFResponseResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.3 AcknowledgeStage2SPFRepudiation
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-3
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack repudiation”
· In case of success the claim ends
	High
	ONLY for CR

2.3.3.1 AcknowledgeStage2SPFRepudiation
This request allows a Claimant Representative to simply indicate that they received the message with the decision on the Stage 2 Settlement Pack Form taken by the Compensator. Nothing else: it is simply a step needed in the workflow.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.3.3.2 AcknowledgeStage2SPFRepudiationResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error

2.3.4 AcknowledgeStage2SPFConfirmation
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-4
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack confirmation”

· In case of success the claim ends
	High
	ONLY for CR

2.3.4.1 AcknowledgeStage2SPFConfirmation
This request allows a Claimant Representative to simply indicate that they received the message with the decision on the Stage 2 Settlement Pack Form taken by the Compensator. Nothing else: it is simply a step needed in the workflow.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.3.4.2 AcknowledgeStage2SPFConfirmationResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error

2.3.5 AddStage2SPFCounterOfferByCM
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-5
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack counter offer (Compensator)”
· In case of success, the claim enters in the phase “Stage 2 Settlement Pack counter offer decision” and is sent to the CR
	High
	ONLY FOR CM

2.3.5.1 AddStage2SPFCounterOfferByCM
This request allows a Compensator to send a Stage 2 Settlement Pack Form Counter Offer for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· S2SPFCounterOfferByCMXML – the content of the Stage 2 Settlement Pack Form Counter Offer that can be submitted by the Compensator
2.3.5.2 AddStage2SPFCounterOfferByCMResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.6 AddStage2SPFCounterOfferByCR
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-6
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack counter offer”
· In case of success, the claim enters in the phase “Stage 2 Settlement Pack counter offer (Compensator)” and is sent to the Compensator
	High
	ONLY FOR CR

2.3.6.1 AddStage2SPFCounterOfferByCR
This request allows a Claimant Representative to send a Stage 2 Settlement Pack Form Counter Offer for a claim.
The reason why there are 2 similar functionalities to add a counter offer is because the set of fields inserted as a counter offer by the CRs is different from the one inserted by the Compensators.

INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· S2SPFCounterOfferByCRXML – the content of the Stage 2 Settlement Pack Form Counter Offer that can be submitted by the Claimant Representative
2.3.6.2 AddStage2SPFCounterOfferByCRResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.7 SetStage2SPFCounterOfferNeeded
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-7
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack counter offer decision”
· In case of success:

IF a new counter offer is needed the claim enters in the phase “Stage 2 Settlement Pack counter offer”;

ELSE the claim enters in the phase “Stage 2 Settlement Pack agreement decision”
	High
	ONLY for CR

2.3.7.1 SetStage2SPFCounterOfferNeeded
This request allows a Claimant Representative to indicate that they don’t need to send to the Compensator a new counter offer for a given claim. As a consequence the claim is moved ahead in the workflow.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isStage2SPFCounterOfferNeeded – a flag that indicates whether the counter offer is needed or not.
2.3.7.2 SetStage2SPFCounterOfferNeededResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.8 ExtendStage2SPFDecisionTimeout
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-8
	· This function can be called only if the claim is in the phase “Stage 2 Settlement Pack decision”
· In case of success, the date of timeout to take a decision is re-set to a new value, and as a consequence also the Date of Timeout for the counter-offer is recalculated (this in needed only in case there will be a counter offer)
	High
	ONLY for CM

2.3.8.1 ExtendStage2SPFDecisionTimeout
This request allows a Compensator to extend the timeframe needed to take a decision for the Staqe2SP Request.

INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· new date of timeout – the new date of timeout to be set. It must be set to a date later than the current date of timeout for the S2SP decision

2.3.8.2 ExtendStage2SPFDecisionTimeoutResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message
· Trace – the trace of the error (always present if code == “error”)
2.3.9 ExtendStage2SPFCounterOfferTimeout
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-9
	· This function can be called only if the claim is in the phase “Stage 2 Settlement Pack counter offer” or “Stage 2 Settlement Pack counter offer (Compensator)” or “Stage 2 Settlement Pack counter offer decision”
· In case of success, the date of timeout to send a counter offer is re-set to a new value
	High
	BOTH CR AND CM

2.3.9.1 ExtendStage2SPFCounterOfferTimeout
This request allows a Compensator or a CR to extend the timeframe needed to make a cunter offer for the Stage2SP.

INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· new date of timeout – the new date of timeout to be set. It must be set to a date later than the current date of timeout for the counter offer.

2.3.9.2 ExtendStage2SPFCounterOfferTimeoutResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)
2.3.10 SetStage2SPFAgreementDecision
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-10
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack agreement decision”
· In case of success, IF the decision is positive the claim goes directly in the phase “Stage 2 Settlement Pack agreed”, ELSE IF the decision is negative the claim goes in the phase “Court Proceedings Pack Form”
	High
	ONLY for CR

2.3.10.1 SetStage2SPFAgreementDecision
This request allows a Claimant Representative to indicate whether they agree with the S2SPF counter offer or not. As a consequence the claim is moved ahead in the workflow.

INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· isAgreed – a flag that indicates whether the offer is agreed or not.

2.3.10.2 SetStage2SPFAgreementDecisionResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)
2.3.11 AcknowledgeStage2SPFAgreed
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-11
	· This function can be called only if the claim is in phase “Stage 2 Settlement Pack agreed”

· In case of success the claim ends
	High
	ONLY for CM

2.3.11.1 AcknowledgeStage2SPFAgreed
This request allows a Compensator to simply indicate that they received the message that inform them that the Stage 2 Settlement Pack Form was agreed by the Claimant Representative. Nothing else: it is simply a step needed in the workflow.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.3.11.2 AcknowledgeStage2SPFAgreedResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error

2.3.12 AddCPPFRequest
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-12
	· This function can be called only if the claim is in phase “Court Proceedings Pack Form”
	High
	ONLY for CR

2.3.12.1 AddCPPFRequestRequest

This request allows to add a Court Prooceedings Pack Form Request for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· CPPFRequestXML – the content of the Court Prooceedings Pack Form Request.

2.3.12.2 AddCPPFRequestResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.13 AddCPPFResponse
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-13
	· This function can be called only if the claim is in phase “Court Proceedings Pack Form Response”
· In case of success the claim goes into the phase: “End of Stage 2”
	High
	ONLY for CM

2.3.13.1 AddCPPFResponse
This request allows to add a Court Prooceedings Pack Form Response for a claim.
INPUT:

· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
· CPPFResponseXML – the content of the Court Prooceedings Pack Form Response.

2.3.13.2 AddCPPFResponseResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:
· claimInfoResponse
· code – ok

· claimInfo

· activityEngineGuid
· applicationId
· phaseCacheId
· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error”)

2.3.14 AcknowledgeCPPFResponse
	Requirement ID
	Requirements Description
	Prioritization
	Remarks

	FUN003-14
	· This function can be called only if the claim is in phase “End of Stage 2”

· In case of success the process ends.
	High
	ONLY for CR

2.3.14.1 AcknowledgeCPPFResponse
This request allows a Claimant Representative to simply indicate that they received the rersponse to the CPPF request. Nothing else: it is simply a step needed in the workflow.

INPUT:
· userAuth

· username – username for the A2A

· password – password for the A2A

· asUser – username of the user in PIP

· claimData

· applicationID

· activityEngineGuid
2.3.14.2 AcknowledgeCPPFResponseResponse

This is the synchronous response message sent by the system back to the A2A client.

OUTPUT

In case of success, the system responds with:

· Code - ok

· claimInfo

· applicationID

· activityEngineGuid
· phaseCacheId

· phaseCacheName

In case of failure or error, the system responds with an error message:
· claimInfoResponse
· Code – “Failure” or “Error”

· Message – a text message

· Trace – the trace of the error (always present if code == “error

PAGE

